US009092414B2

a2z United States Patent (10) Patent No.: US 9,092,414 B2
Levy et al. 45) Date of Patent: *Jul. 28, 2015
(54) USING DOCUMENT TEMPLATES TO USPC 715/200, 201, 205, 206, 210, 234, 236,
ASSEMBLE A COLLECTION OF 715/239;709/203
DOCUMENTS See application file for complete search history.
(75) Inventors: Philip Levy, Los Altos, CA (US); Naoki (56) References Cited
Hada, San Jose, CA (US) U.S. PATENT DOCUMENTS
(73) Assignee: Adobe Systems Incorporated, San Jose, 4945475 A 7/1990 Bruffey et al.
CA (US) 5,043,891 A 8/1991 Goldstein et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 11552’(‘51(;‘332093 ZiJ;:ted under 35 FOREIGN PATENT DOCUMENTS
H H H H ol EP 0281 225 9/1988
"Cfll:iilgftent is subject to a terminal dis Ep 0620517 AL 10/1994
(Continued)
(21) Appl. No.: 12/027,975 OTHER PUBLICATIONS
(22) Filed: Feb. 7,2008 Bertino, et al. “An Evaluation of Text Access Methods”, Instituto di
Elaborazione dell’Informazione, 1989, IEEE, pp. 810-819.
(65) Prior Publication Data (Continued)
US 2013/0212062 Al Aug. 15,2013
Primary Examiner — Cesar Paula
Related U.S. Application Data Assistant Examiner — James H Blackwell
o (74) Attorney, Agent, or Firm — Finch & Maloney PLLC
(63) Continuation of application No. 10/305,717, filed on
Nov. 27, 2002, now Pat. No. 7,356,768. (57 ABSTRACT
Methods and apparatus, including computer program prod-
(51) Int.CL ucts, to assemble a collection of documents according to a
GO6F 17/00 (2006.01) document list. The document list represents documents to be
GOOF 17/24 (2006.01) included in the collection, and includes multiple entries that
GOG6F 17/22 (2006.01) identify document templates. Each document template
(Continued) includes instructions that a web server can execute to generate
(52) US.Cl a web document based on one or more parameters. A web
CPC) GOGF 17/248 (2013.01); GOGF 17/2247 document corresponding to each of the multiple entries is
"""" éOB 01 GOG6F 1773 0;?9 (’2013 01); HO4L requested; the requested web documents are received and
T 67/0 2 (20’13 o1) stored in the collection of documents. Links in the received
’ web documents can be identified and updated. The collection
(58) Field of Classification Search

of documents can be accessed as part of a web site.

CPC GO6F 17/248; GO6F 17/3089; GO6F
17/2247; HO4L 67/02 25 Claims, 5 Drawing Sheets
100\
160 -
o] foe =l
R R 1
| y |
N et | | ety | | S | |
| 52T 1547 1567 |

1103

120
=

| Collection of documents Page generator

—
| e o]
NG
| e

US 9,092,414 B2

Page 2
(51) Int.ClL 6,990,633 Bl 1/2006 Miyasaka et al.
GO6F 17/30 2006.01 7,039,658 B2 5/2006 Starkey
() 7,085,997 Bl 8/2006 Wu et al.
HO4L 29/08 (2006.01) 7,174,508 B2* 2/2007 Lakhanietal. ... 715/234
2001/0034658 Al 10/2001 Silva et al.
(56) References Cited 2001/0047326 Al 11/2001 Broadbent et al.
2001/0047375 Al 11/2001 Fest
U.S. PATENT DOCUMENTS 2001/0054020 Al 12/2001 Barth et al.
2002/0026462 Al 2/2002 Shotton et al.
5228121 A 7/1993 Fontaine et al. 2002/0032701 Al 3/2002 Gao et al.
S 2002/0065851 Al 5/2002 Watson et al.
5,301,286 A 4/1994 Rajani ;
- 2002/0103828 Al 8/2002 Kupiec et al.
5,367,573 A 11/1994 Quimby
- 2002/0152245 Al 10/2002 McCaskey et al.
5,446,653 A 8/1995 Miller et al.
2002/0178190 Al 11/2002 Pope et al.
5,530,852 A 6/1996 Meske, Ir. et al. ;
2002/0188633 Al 12/2002 Davis et al.
5,572,643 A 11/1996 Judson
- 2002/0198962 Al 12/2002 Horn et al.
5,659,729 A 8/1997 Nielsen ;
: 2003/0061569 Al 3/2003 Aoki
5,694,546 A 12/1997 Reisman
2003/0135824 Al 7/2003 Ullmann et al.
5,708,826 A 1/1998 Ikeda et al.
2003/0172343 Al 9/2003 Leymaster et al.
5,745,908 A 4/1998 Anderson et al.
- 2003/0212891 Al 11/2003 Evans et al.
5,764,908 A 6/1998 Shoiji et al. ‘
2004/0012625 Al 1/2004 Lei et al.
5,781,629 A 7/1998 Haber et al.
- 2004/0030741 Al 2/2004 Wolton et al.
5,809,250 A 9/1998 Kisor '
2004/0205654 Al 10/2004 Eisen
5,864,852 A 1/1999 Luotonen
2005/0028090 Al 2/2005 Sweet
5,873,077 A 2/1999 Kanoh et al. 2005/0091340 Al 22005 F . 1
5,887,171 A 3/1999 Tada et al. acemire et al.
5,892,908 A 4/1999 Hughes et al.
5,893,914 A 4/1999 Clapp FOREIGN PATENT DOCUMENTS
5,930,813 A 7/1999 Padgett et al.
5,937,406 A 8/1999 Balabine et al. JP 06/266702 9/1994
5,940,843 A 8/1999 Zucknovich et al. JP 6301732 10/1994
5,953,732 A 9/1999 Meske et al. JP 6309128 11/1994
5,963,966 A 10/1999 Mitchell et al. JP 07-121344 5/1995
5,987,480 A 11/1999 Donohue et al. JP 07-160683 6/1995
5,987,482 A 11/1999 Bates et al. WO WO 99/35592 7/1999
5,991,878 A 11/1999 McDonough et al.
6,005,945 A 12/1999 Whitehouse OTHER PUBLICATIONS
6,026,433 A 2/2000 D’Arlach et al.
6,029,182 A 2/2000 Nehab et al. Kuma, “Home Page Super Technique: Magnificent Arrangement for
gagggaggg ﬁ g; %888 If\jarlilyen etal. your Home Page by Java, Movie, etc.” Mac Fan Internet, K.K.
,038, arks s L
6.061.698 A 52000 Chadha et al. Malmch.l Cor}mumcatl.ons, Aug. 1, 1997, vol. 2, No. 8, pp. 130-1.33.
6,061,700 A 5/2000 Brobst et al. Yamashina, “Introduction of a Manual Production System using
6,072,461 A 6/2000 Haran SGML”, Research Report of the Society of Information Processing,
6,081,907 A 6/2000 Witty et al. Corporation of Society of Information Processing, Sep. 19, 1997, vol.
6,096,096 A 8/2000 Murphy et al. 97, No. 93, p. 25-30.
6,115,723 A 9/2000 Fallside Yoo, et al. “Performance Evaluation of Dynamic Signature File
6,125,388 A 9/2000 Reisman Methods”, COMPSAC "95, IEEE, Aug. 1995 p. 144-149.
6,157,649 A 12/2000 Peirce et al.
6.157.917 A 12/2000 Barber Japanese Examiner Tsuyoshi Imamura, JPO Non-Final Office Action
6.167.409 A 12/2000 DeRose et al. in Japan App. No. 2008-321351, mailed Jun. 9, 2009, 3 pages.
6,192,382 Bl 2/2001 Lafer et al. European Examiner Alyssa Bowler, EPO Non-Final Office Action in
6,208,995 Bl 3/2001 Himmel et al. App. No. 07 009 645.8, mailed Jul. 20, 2009, 6 pages.
6,209,004 Bl 3/2001 Taylor D.DeRoure, L. Carr, W. Hall and G. Hill, “A Distributed Hypermedia
6,230,173 Bl 5/2001 Ferrel et al. Link Service” IEEE 1996 pp. 156-161.
6,237,011 Bl 5/2001 Ferguson et al. - .
. WebWhacker 2.0 User Guide, 1996, downloaded from the internet,
6,237,060 Bl 5/2001 Shilts et al. i . ; . .
6.243.740 Bl 6/2001 Minneman et al. http.//.WWW.thefreellbrary.com/i/prlnt/PrlntAmcle.
6,263,352 Bl 7/2001 Cohen aspx?id=18382834, 107 pages.
6,308,188 Bl 10/2001 Bernardo et al. WebWhacker Product Documentation—Readme, Tips and Quick
6,313,835 Bl 11/2001 Gever et al. files from WebWhacker v1.0bl1le installation directory (copyright
6,351,755 Bl 2/2002 Najork et al. 1995) 21 pages.
6,377,993 Bl 4/2002 Brandt et al. Adobe Systems, Inc., Portable Document Format Reference Manual,
6,411,996 Bl 6/2002 Albers ‘Addison Weslev Publishine Co.. 1993. 240
6,415,278 B1* 7/2002 Sweetetal. ..o, 707/770 son wesley FubLSAIng L.0., 1759, 240 pages.
6,449,636 Bl 9/2002 Kredo et al. Aho & Ullman, Principles of Compiler Design, Addison Wesley,
6,460,060 Bl 10/2002 Maddalozzo et al. 1977, 614 pages.
6,493,758 Bl 12/2002 McLain C. Mic Bowman et al., “The Harvest Information Discovery and
6,538,673 Bl 3/2003 Maslov Access System,” Elsevier Computer Networks and ISDN Systems 28
6,567,799 B2 5/2003 Sweet et al. (1995), 9 pages
6,594,682 B2 7/2003 Peterson et al. Databa’se Intérnet “HTML Document Processing with
6,601,057 Bl 7/2003 Underwood et al. 715/207 " L . .
6.605.120 Bl 8/2003 Field et al. HTMLDOC,” [online], [retrieved on Nov. 29, 2000]. Retrieved from
6,681,255 Bl 1/2004 Cooper et al. th.e ?nternet <URL: www.easysw.com>; Mar. 10,.199.8, 4 pages.
6,769,009 Bl 7/2004 Reisman DigiDox and Adobe Acrobat, “A powerful combination,” DigiDox,
6,789,080 Bl 9/2004 Sweet et al. Inc. (1996), 8 pages.
6,810,404 Bl 10/2004 Ferguson et al. European Examiner A. Bowler, Office Action for Application No. 98
6,864,904 Bl 3/2005 Ran et al. 308 818.8, mailed Mar. 24, 2005, 5 pages.
6,907,463 Bl 6/2005 Kleinpeter, III et al. European Examiner Alyssa Bowler, Office Action for Application
6,925,594 B2 8/2005 Dutta et al. No. 98 308 818.8 dated Dec. 14, 2006, 2 pages.

US 9,092,414 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

“ForeFront’s WebWhacker to be Bundled with CE Software’s
WebArranger; Users of WebArranger Now Able to Capture Whole
Web Sites and View Offline,” [online] [retrieved on Oct. 6, 2009].
Retrieved from the Internet <URL: http://www.thefreelibrary.
com/_ /print/PrintArticle.aspx?id+17872995>, 3 pages.

Graham, HTML Sourcebook, Third Edition, Wiley Computer Pub-
lishing, 1997, 620 pages.

Hurlbert, Lawrence, “WebWhacker for Window 95/NT Software
Review,” [online] [retrieved on Oct. 2, 2009]. Retrieved from the
Internet <URL: http://www.alamopc.org/pcalamode/reviews/
archivel/rev2 18html>, 3 pages.

Imamura, Japanese Patent Office, Examination Corp. 4, Office
Action for JP 10-325495 dated Aug. 21, 2007, 6 pages.

Japanese Examiner T suyoshi Imamura, Office Action for Application
No. 10-325495, mailed Feb. 12, 2008, 2 pages.

Japanese Examiner Tsuyoshi Imamura, Office Action for Application
No. 10-325495, mailed Aug. 19, 2008, 3 pages.

Japanese Examiner Tsuyoshi Imamura, Office Action for Application
No. 2008- 321351, mailed Apr. 6, 2010, 2 pages.

Rivest, R., “The MD5 Message-Digest Algorithm,” Network Work-
ing Group, Request for Comments: 1321, Apr. 1992, 21 pages.
Shelton, Denise, “ForeFront releases WebWhacker 1.0,” [online]
[retrieved on Oct. 2, 2009]. Retrieved from the Internet <URL: http://
news.cnet.com/ForeFront-releases-WebWhacker-1.0/2100-1001__
3-201337.html>, 1 page.

Skinner R., “Cross-Platform Formatting Programs” Library Soft-
ware Review, Summer 1994, USA, vol. 13, No. 2, pp. 152-156.
Strom, David, “Offline Web browsing: It’s like surfing in Ohio,”
[online] [retrieved on Oct. 2, 2009]. Retrieved from the Internet
<URL: http://www.strom.com/pubwork/iwoffline.html>, 3 pages.

* cited by examiner

U.S. Patent Jul. 28, 2015 Sheet 1 of 5 US 9,092,414 B2

100—\
160
N
>
153 155 Browser
Data Data | >
r Web | site]
| \ 4
150 Document Document Static web
\1 template 1 template 2 document
| 152/ 154/ 156—"
140 —A
130—~ Web Server - ot
A
120 110
_ \/ D)
Collection of documents Page generator
Doc. ' 114 Collector
1 Doc. Doc. | < «—
5 .
3
1164 Link engine
170~ Document list

FIG. 1

U.S. Patent Jul. 28, 2015 Sheet 2 of 5 US 9,092,414 B2

200
~
Collection "Static publishing"

210 220 230
Y R Y
Member Source Parameter

201

Lot Article 1 http://publishing.com/news headline

2(%" Article 2 http://publishing.com/news politics

N Article 3 http://publishing.com/news world

FIG. 2A
250
N\
Collection "June Expense report"”
210" 220" 230'
y Y y
o51| Member Source Parameter
25}7 Joe http://company.com/payroll Joe-June
N Jill http://company.com/payroll Jill-dune

FIG. 2B

U.S. Patent Jul. 28, 2015 Sheet 3 of 5

300
N

US 9,092,414 B2

Receive document list

310

l

Collect documents as specified by the
document list

_/320

l

Establish links between collected
documents based on the document list

330

l

Allow Web access to the inter-linked
documents

340

FIG. 3

400
N

440

Another
entry in document
list?

Yes

F 450

(Stop collecting documents)

FIG. 4

Store next web document in the collection \.

U.S. Patent Jul. 28, 2015 Sheet 4 of 5 US 9,092,414 B2

Request next web document identified in 410
next entry in the document list N—/

Receive next web document 420

430

U.S. Patent Jul. 28, 2015 Sheet 5 of 5 US 9,092,414 B2

Specify a reference for each 510
document in the collection N/

l

Select a next document in the 520
collection N/

l

Scan next document to find
resource identifiers matchingan |_/
entry in the document list

F 550

Replace each with
corresponding
specified reference

Matching
resource identifiers?

Yes

Another
document to scan?

570

o

FIG. 5

US 9,092,414 B2

1
USING DOCUMENT TEMPLATES TO
ASSEMBLE A COLLECTION OF
DOCUMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application and claims
the benefit of priority under 35 USC § 120 of U.S. application
Ser. No. 10/305,717, filed on Nov. 27, 2002, now U.S. Pat.
No. 7,356,768.

BACKGROUND OF THE INVENTION

The present invention relates to generating electronic
documents.

The Internet is a global network that uses a common com-
munication protocol, the Transfer Control Protocol/Internet
Protocol (““TCP/IP”), to transmit data from one computer to
another. In order to use the transmitted data, computer appli-
cations adopt communication standards. For example, the
World Wide Web (“Web”) is a system that includes server
applications supporting Hyper Text Markup Language
(“HTML”) documents. Such computer applications are
referred to as web servers, because they deliver, i.e., ‘serve’,
electronic documents to users on the Web. The served docu-
ments are called web pages or web documents. Each web
document has a Uniform Resource Locator (“URL”) address
that allows web users to request the web document from a
corresponding server and to view the requested document, for
example, by using web browsers, such as Netscape Navigator
or Microsoft Internet Explorer. Web documents can include
images, texts, scripts, or any other content in HTML or any
other format.

A web server can serve web documents from one or more
web sites. Each web site is a collection of web documents and
can include static web documents, document templates, or
both. A static web document, also called static web page, has
only static content that is provided each time the document is
requested from the server. A document template, also called
dynamic web page, identifies a class of web documents; an
instance ofthe class is generated each time a web document is
requested according to the template. The generated web
document depends on parameters that can be specified by the
web server, can be a result of communication with a user, or
can be directly included in a URL request. The document
template includes instructions for generating the requested
web document that are typically implemented using a server
side scripting technology such as Active Server Pages
(“ASP”), JavaServer Pages (“JSP”), and PHP Hypertext Pre-
processor (“PHP”). In addition to instructions, document
templates can include static content, for example, in HTML
format.

SUMMARY OF THE INVENTION

The invention provides computer-implemented methods
and apparatus for assembling a collection of documents
according to a document list identifying web documents to be
collected. In general, in one aspect, the invention provides
methods, systems and apparatus, including computer pro-
gram products, that implement techniques for assembling a
collection of documents. The techniques include receiving a
document list that represents documents to be included in the
collection. The document list includes multiple entries iden-
tifying document templates. Each document template
includes instructions that a web server can execute to generate

10

15

20

25

30

35

40

45

50

55

60

65

2

a web document based on one or more parameters. A web
document corresponding to each of the multiple entries is
requested; the requested web documents are received and
stored in the collection of documents.

Particular implementations can include one or more of the
following features. Links can be established between the
received web documents stored in the collection. Establishing
the links can include identifying links in the received web
documents and updating the identified links. The identified
links can refer to one or more web documents represented in
the document list. The updated links can refer to the corre-
sponding documents in the collection of documents.

The web documents can be requested through the Internet.
Each entry in the document list can represent a web docu-
ment. The document list can include entries representing
static web documents to be included in the collection. Access
can be provided to the collection of documents as part of a
web site. Entries that identify a document template can
specify parameters for generating a corresponding web docu-
ment according to the document template. Requesting the
corresponding web document can include passing the speci-
fied parameters to a web server for use in preparing the
corresponding web document. The document templates can
include instructions implemented in ASP, JSP, or PHP tech-
nology. The document list can represent documents to be
included in the collection by a URL or a URI. A received web
document can be an HTML document.

A document list can be received from a user. A portion of
the document list can be received in response to a request
identifying a document template and a set of parameters. The
set of parameters can be used in identifying documents to be
included in the collection. The request can be transmitted to a
web server to request all or a portion of the document list.

The invention can be implemented to realize one or more of
the following advantages. A collection of documents can be
assembled from web documents generated by web servers
according to document templates. The document templates
can rely on standard server side scripting technology such as
ASP, ISP, and PHP. The collection of the documents can be
controlled by a document list. The document list can be
dynamically generated by using the standard document tem-
plates. The document list can identify (and the collection can
include) web documents that include text, graphics, or any
other content in HTML, Portable Document Format (“PDF”),
Joint Photographic Experts Group (“JPG™), Graphics Inter-
change Format (“GIF”), or in any other format. The collection
can be assembled automatically. The collection can be
assembled without using proprietary scripting techniques.
The assembled collection can be used to generate a static web
site. In the generated static web site, the static documents can
be available even if the web documents used to assemble the
collection are not. The static web site may provide faster
access to users than the web site serving web documents
according to document templates. In the static web site, the
static web documents can be served without accessing data-
bases. Static web sites can be designed by using standard
document templates.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features and advantages of the invention
will become apparent from the description, the drawings, and
the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram showing an exemplary
system to assemble a collection of documents.

US 9,092,414 B2

3

FIGS. 2A and 2B show exemplary document lists.

FIGS. 3-5 are flowcharts showing methods for assembling
a collection of documents.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 shows a system 100 that includes a page generator 1
10 that can be used to assemble a collection of documents
120. In the implementation shown in FIG. 1, the page gen-
erator 110 is a computer application that communicates with
aweb server 130 through a computer network 140 to generate
documents for the collection 120. The computer network 140
can be the Internet or any other wide or local area network. In
an alternative implementation, the page generator 110 can
access the web server 130 directly, without using a computer
network.

The page generator 110 uses a document list 170 to
assemble the collection 120. The document list 170 repre-
sents documents to be included in the collection 120. The
represented documents can be web documents, or any other
documents that are available locally or over the computer
network 140, e.g., by using File Transfer Protocol (“FTP”). In
one implementation, the document list 170 includes multiple
entries each of which corresponds to a document to be
included in the collection 120. Each entry in the document list
170 can explicitly identify a web document that will be used
as the source for the corresponding document in the collec-
tion 120. Examples of such document lists are discussed
below with reference to FIGS. 2A and 2B. In alternative
implementations, the document list can implicitly identify
one or more web documents to be included in the collection.
For example, the document list can identify a web site and
specify search parameters to identify corresponding web
documents in the web site.

To collect web documents represented by the document list
170, the page generator 110 includes a collector 114 that also
stores the collected web documents as the corresponding
documents in the collection 120. Details of collecting web
documents are discussed below with reference to FIGS. 3 and
4. The page generator 110 also includes a link engine 116 to
establish links between the documents in the collection 120.
The link engine 116 can use the document list 170 to find and
update links in the collected documents as discussed below
with reference to FIG. 5.

The page generator 110 can collect web documents from a
web site 150 served by the web server 130. In the implemen-
tation shown in FIG. 1, web documents from the web site 150
can be also viewed with a web browser 160 connected to the
network 140. The web site 150 includes a first document
template 152, a second document template 154, and a static
document 156. If requested by the page generator 110 (or by
the web browser 160), the web server 130 can generate web
documents according to the first 152 or the second 154 docu-
ment templates by incorporating content into the web docu-
ments from a first database 153 or a second database 155,
respectively. The page generator 110 (or the browser 160) can
also request the static document 156 from the server 130. In
alternative implementations, document templates can incor-
porate content from any resource and are not associated with
particular databases.

As shown in FIG. 1, once assembled, the collection of
documents 120 can be made accessible onthe network 140 by
connecting it to the web server 130. In alternative implemen-
tations, documents in the collection 120 can be made acces-
sible by connecting the collection 120 to another web server.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2A shows an exemplary list 200 that can be used as the
document list 170 for the page generator 110 (FIG. 1) to
assemble a collection. The list 200 includes three entries
201-203; each entry in the list corresponds to a document in
the collection and identifies a source, in this implementation
a web document, for the corresponding document in the col-
lection. For each entry, the exemplary list 200 includes three
fields: amember field 210, a source field 220, and a parameter
field 230. While the document lists illustrated in FIGS. 2A
and 2B are represented as tables sharing a common set of
fields in a common arrangement, other fields and/or other
arrangements of fields can be used. Thus, for example, a
document list can include more than one parameter field or no
parameter field at all. Without a parameter field, optional
parameters can be included in the source field, e.g., by encod-
ing the parameters in a corresponding URL. The exemplary
list 200 can be implemented as, e.g., a tab delimited file or an
HTML document.

The member field 210 of an entry includes a document
identifier that identifies a corresponding document in the
collection. The document identifier can be, e.g., a file name, a
path, or a URL for the document in the collection. In the
example shown in FIG. 2A, the documents in the collection
are identified as Articlel, Article2, and Article3 correspond-
ing to the first 201, second 202, and third 203 entries, respec-
tively.

The source field 220 of an entry includes a source identifier
that identifies a source for the corresponding document in the
collection. The identified source can be, for example, a static
web document or a document template. The page generator
110 can use the source identifier to request the static web
document or a web document generated according to the
document template. The source identifier can include a URL
if the static web document or the document template can be
accessed through the Web. Alternatively, the source identifier
can include a TCP/IP address, a domain name, or any other
identifier, such as Uniform Resource Identifiers (“URIs”). In
the example shown in FIG. 2A, all three entries 201-203 have
the same source identifier that identifies the URL of a docu-
ment template (that is, a class of web documents) on a pub-
lishing web site. In alternative implementations, each entry
can identify a different document template, static web docu-
ment, or any other source.

The parameter field 230 of an entry can include one or more
parameters that can be used by a server to generate a web
document according to a document template. For example,
instructions in the document template can use the parameters
to make calls, such as database calls to incorporate content in
a database into the web document. Alternatively, the param-
eters can be used by the document template to specify layout
features, such as an arrangement of elements in the web
document. In the example shown in FIG. 2A, the parameters
identify content from the publishing web site including
“headline” news for the first entry 201, news about “politics”
for the second entry 202, and news in the “world” for the third
entry 203.

Based on the list 200, the page generator 110 can assemble
the collection of documents from the web documents gener-
ated according to the document template in the news publish-
ing web site. Techniques for assembling the collection are
discussed with reference to FIGS. 3-5. The assembled collec-
tion can be used as a “static publishing” web site whose
accessibility does not depend on the performance of data-
bases used to generate the web documents. For example,
documents in the collection can be made accessible as static
web documents through the same web server that generated
the web documents according to the document template. In

US 9,092,414 B2

5

this implementation, the web server can serve a static web
document in the collection instead of a corresponding web
document generated according to the document template. In
an alternative implementation, another web server can serve
the static web documents in the collection as a new web site.
Static publishing can be advantageous compared to web
documents generated dynamically using a database, for
example, when the database is slow or unavailable during
update, or high demand.

FIG. 2B shows a second exemplary list 250 that can be used
as the document list 170 for the page generator 110 (FIG. 1).
The list 250 includes two entries 251-252; each entry in the
list corresponds to a document in a collection to be
assembled. Like the list 200, the list 250 has three fields. A
member field 210" identifies documents in the collection: one
document for “Joe” and another one for “Jill”. For both docu-
ments, a source field 220" identifies the URL of the same
document template. The parameter field 230' specifies that the
document template will incorporate data about Joe’s
expenses in June for the “Joe” document, and data about Jill’s
expenses in June for the “Jill” document.

Based on the list 250, the page generator can generate an
expense report for June that includes a static document for
Joe’s expenses, and another static document for Jill’s
expenses. By mounting, i.e., connecting, the static documents
to a web server, they can be made available as part of a web
site. The static web documents in the web site may be avail-
able even if the document template identified in the source
field 220" is not.

FIG. 3 shows a method 300 for assembling a collection of
documents according to one aspect of the invention. The
assembling method 300 can be performed, for example, by
the page generator 110 shown in FIG. 1.

The page generator receives a document list (step 310). As
discussed above with reference to FIGS. 2A and 2B, the
document list identifies sources, such as web documents, for
corresponding documents in the collection to be assembled.
The document list can be received from a user or from a
computer application. The document list can be sent to the
page generator through a computer network, such as the Inter-
net.

In one implementation, the document list, or a portion of'it,
is received in response to a request that identifies a document
template and a set of parameters. The set of parameters can be
used to identify documents that are generated according to the
document template and will be included in the collection. For
example, the page generator can query a web server. The
query can identify a document template, e.g., by a URL, and
ask the web server to identify web documents that can be
generated according to the identified document template.
Optionally, the query can include search parameters. In
response, the web server can identity a set of web documents
based on the search parameters, and send the URLs ofthe web
documents in the set to the page generator. The page generator
can use the returned URLs to complete the document list, or
to prepare an explicit document list from an implicit one.
Alternatively, instead of the page generator, another applica-
tion can query the server, prepare the document list, and send
it to the page generator.

The page generator collects documents (step 320). In one
implementation, the page generator iterates through the
entries of the received document list and, for each entry,
transmits to a web server a request including a source identi-
fier and any specified parameters. The web server retrieves a
web document based on the request and serves the web docu-
ment to the page generator. The page generator stores the

10

20

30

40

45

55

60

6

received web document in the collection. Collecting docu-
ments is discussed in more detail with reference to FIG. 4.

The page generator establishes links between the collected
documents (step 330). In one implementation, the documents
are collected and the corresponding links are established by
the collector 114 and the link engine 116 of the page generator
(FIG. 1), respectively. Establishing links between the docu-
ments are discussed in more detail with reference to FIG. 5.

The page generator can allow access to the inter-linked
documents in the collection (step 340) through a web server.
For example, the page generator can send the file names of the
documents in the collection to the web server. Based on the
received file names, the web server can assign URLs to the
documents in the collection to provide web access. Alterna-
tively, a user can mount the inter-linked documents of the
collection on a web server.

FIG. 4 shows a method 400 for collecting documents for a
collection according to one aspect of the invention. The col-
lecting method 400 can be performed, for example, by the
collector 114 in the page generator 110 shown in FIG. 1. The
collecting method 400 uses a document list, such as the docu-
ment lists described above with reference to FIGS. 2A and
2B, where each entry in the document list identifies a source
web document and a corresponding document in the collec-
tion.

The collector takes a next entry in the document list and
requests a next web document identified in the next entry
(step 410). To start the collecting method 400, the next entry
can be, e.g., the first entry in the document list. The next entry
can identify the next web document, e.g., by a URL and,
optionally, additional parameters. In one implementation, the
parameters are encoded into a URL to request the next web
document. The next web document can be a static web docu-
ment or generated according to a document template, and can
be requested from a web server directly or through a computer
network such as the Internet.

The collector receives the next web document (step 420),
and stores the received web document in the collection as the
document identified in the next entry (step 430). For example,
the collector can save the received web document as a file
named as the document identifier in the next entry (see FIGS.
2A and 2B). In one implementation, the next web document
is received from a web site that includes multiple levels of
directories, and the received web document is stored in a
subdirectory that matches the subdirectory of the next web
document in the web site. By duplicating the directory struc-
ture of the web site, the documents in the collection will have
the same hierarchical relationships as the web documents in
the web site.

The collector verifies the document list (decision 440). If
the list includes an entry identifying a web document that has
not been requested yet (“Yes” branch of decision 440), the
collector requests the web document (i.e., returns to step
410). If there is no such entry left in the document list (“No”
branch of decision 440), the collector stops collecting docu-
ments for the collection (step 450).

As shown in FIG. 5, relative links between the collected
documents can be established by using a linking method 500
that can be performed, for example, by the link engine 116 of
the page generator 110 (FI1G. 1). The linking method 500 uses
a document list, such as the document lists described above
with reference to FIGS. 2A and 2B where each entry in the
document list identifies a web document and a corresponding
document in the collection.

The link engine specifies a reference for each document in
the collection (step 510). The specified references can be
based on a reference system that can be used to retrieve each

US 9,092,414 B2

7

document in the collection. For example, a specified refer-
ence caninclude relative links, a file name of'the document, or
a path to a file directory where the document is located.

The link engine selects a next document in the collection
(step 520). For the first selection, the next document can be,
e.g., the document identified in the first entry in the document
list.

The link engine scans the next document to find resource
identifiers that match an entry in the document list (step 530).
For example, the link engine parses a markup language, e.g.,
HTML, document to find tags that identify links. The identi-
fied links are compared to source identifiers and parameters in
the document list. Typically, a matching resource identifier is
alink that has been used to request a web document identified
by an entry in the document list. For example, the matching
resource identifier can include a URL of a web document
identified by an entry in the document list. If the web docu-
ment is generated according to a document template, the
matching resource identifier can include parameters specified
in the corresponding entry in the document list. Optionally,
the link engine can match different resource identifiers with
the same entry in the document list, for example, when the
entry identifies a web document that can be referenced by
URLs including different parameter values.

The link engine verifies if any matching resource identifier
have been found during the scan of the next document (deci-
sion 540). If one or more resource identifiers match entries in
the document list (“Yes” branch of decision 540), for each
such entry, the link engine identifies the corresponding docu-
ment in the collection, and replaces the matching resource
identifier with the reference specified for the corresponding
document (step 550). Optionally, the link engine can replace
each matching resource identifier when it is found during the
scan of the next document.

When all matching resource identifiers have been replaced,
or no matching resource identifier is found (“No” branch of
decision 540), the link engine verifies if all the documents in
the collection have been scanned (decision 560). If the col-
lection includes at least one document that has not been
scanned yet (“Yes” branch of decision 560), the link engine
selects one such document (i.e., returns to step 520). If there
is no such document left in the collection (“No” branch of
decision 560), the link engine stops (step 570). By linking the
documents in the collection to each other as described above,
the collection can be mounted on a web server and used as a
static web site.

The invention can be implemented in digital electronic
circuitry, or in computer hardware, firmware, software, or in
combinations of them. The invention can be implemented as
a computer program product, i.e., a computer program tangi-
bly embodied in an information carrier, e.g., in a machine-
readable storage device or in a propagated signal, for execu-
tion by, or to control the operation of, data processing
apparatus, e.g., a programmable processor, a computer, or
multiple computers. A computer program can be written in
any form of programming language, including compiled or
interpreted languages, and it can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A computer program can be deployed to be
executed on one computer or on multiple computers at one
site or distributed across multiple sites and interconnected by
a communication network.

Method steps of the invention can be performed by one or
more programmable processors executing a computer pro-
gram to perform functions of the invention by operating on
input data and generating output. Method steps can also be

20

40

45

60

8

performed by, and apparatus of the invention can be imple-
mented as, special purpose logic circuitry, e.g., an FPGA
(field programmable gate array) or an ASIC (application-
specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. The essential elements of a
computer are a processor for executing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto-optical disks, or optical disks. Information carriers
suitable for embodying computer program instructions and
data include all forms of non-volatile memory, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks. The pro-
cessor and the memory can be supplemented by, or incorpo-
rated in special purpose logic circuitry.

To provide for interaction with a user, the invention can be
implemented on a computer having a display device, e.g., a
CRT (cathode ray tube) or LCD (liquid crystal display) moni-
tor, for displaying information to the user and a keyboard and
a pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of devices
can be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input.

The invention can be implemented in a computing system
that includes a back-end component, e.g., as a database, or
that includes a middleware component, e.g., an application
connecting a data source to a Web server, or that includes a
front-end component, e.g., a client computer having a graphi-
cal user interface or a Web browser through which a user can
interact with an implementation of the invention, or any com-
bination of such back-end, middleware, or front-end compo-
nents. The components of the system can be interconnected
by any form or medium of digital data communication, e.g., a
communication network. Examples of communication net-
works include a local area network (“LLAN”) and a wide area
network (“WAN”), e.g., the Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

The invention has been described in terms of particular
embodiments. Other embodiments are within the scope of the
following claims. For example, the steps of the invention can
be performed in a different order and still achieve desirable
results.

What is claimed is:

1. A method comprising:

receiving at a server one or more document templates, each

template identifying a class of documents and including
instructions executable by a web server to generate a
particular static document of the class;

receiving a document list including a plurality of entries,

each of the plurality of entries identifying a document

US 9,092,414 B2

9

template where an entry identifying a particular docu-
ment template also specifies a particular document of the
class to be generated from the particular document tem-
plate;

generating a plurality of static documents according to the
document list, each static document corresponding to an
entry in the document list, each static document gener-
ated from a corresponding document template identified
in the document list;

for a generated static document of the plurality of static
documents, identifying one or more links within the
generated static document, and for each link that
includes a reference to an entry in the document list,
modifying the link to refer to the corresponding gener-
ated static document; and

storing the plurality of static documents in a collection of
documents, the collection of documents having a hier-
archical structure.

2. The method of claim 1, further comprising:

receiving a user request for a document;

when the request corresponds to an entry in the document
list, serving the previously generated static document
from the collection of documents corresponding to the
entry; and

when the request does not correspond to an entry in the
document list, dynamically generating the requested
document.

3. The method of claim 1, wherein:

each entry in the document list represents a web document.

4. The method of claim 1, wherein:

the document list includes one or more entries representing
static web documents to be included in the collection of
documents.

5. The method of claim 1, wherein:

one or more of the entries in the plurality of entries speci-
fies one or more parameters for generating a correspond-
ing static document according to the document template
identified in the corresponding entry; and

generating a document corresponding to an entry identify-
ing a document template includes passing the one or
more parameters specified by the entry to a web server
for use in generating the corresponding document.

6. The method of claim 1, wherein:

one or more of the document templates includes instruc-
tions implemented in ASP, JSP, or PHP technology.

7. The method of claim 1, wherein:

the document list represents documents to be included in
the collection of documents, the documents identified by
a URL or a URIL

8. The method of claim 1, wherein:

receiving the document list includes receiving at least a
portion of the document list in response to a request
identifying a document template and a set of parameters,
the set of parameters used to identify documents to be
included in the collection of documents.

9. A computer program product, tangibly embodied in a

non-transitory machine-readable storage device, including
instructions operable to cause data processing apparatus to:

receive at a server one or more document templates, each
template identifying a class of documents and including
instructions executable by a web server to generate a
particular document of the class;

receive a document list including a plurality of entries, each
of the plurality of entries identifying a document tem-
plate where an entry identifying a particular document
template also specifies a particular document of the class
to be generated from the particular document template;

10

15

25

35

40

45

50

55

60

65

10

generate a plurality of static documents according to the
document list, each static document corresponding to an
entry in the document list, each static document gener-
ated from a corresponding document template identified
in the document list;

for a generated static document of the plurality of static
documents, identify one or more links within the gener-
ated static document, and for each link that includes a
reference to an entry in the document list, modify the
link to refer to the corresponding generated static docu-
ment; and

store the plurality of static documents in a collection of
documents, the collection of documents having a hier-
archical structure.

10. The computer program product of claim 9, further

comprising instructions operable to cause data processing
apparatus to:

receive a user request for a document;

when the request corresponds to an entry in the document
list, serve the previously generated static document from
the collection of documents corresponding to the entry;
and

when the request does not correspond to an entry in the
document list, dynamically generate the requested docu-
ment.

11. The computer program product of claim 9, wherein:

each entry in the document list represents a web document.

12. The computer program product of claim 9, wherein:

the document list includes one or more entries representing
static web documents to be included in the collection of
documents.

13. The computer program product of claim 9, further

comprising instructions operable to cause data processing
apparatus to:

provide access to the collection of documents as part of a
web site.

14. The computer program product of claim 9, wherein:

one or more of the entries in the plurality of entries speci-
fies one or more parameters for generating a correspond-
ing document according to the document template iden-
tified in the corresponding entry; and

instructions operable to cause data processing apparatus to
generate a document corresponding to an entry identi-
fying a document template includes instructions oper-
ableto cause data processing apparatus to pass the one or
more parameters specified by the entry to a web server
for use in generating the corresponding document.

15. The computer program product of claim 9, wherein:

one or more of the document templates includes instruc-
tions implemented in ASP, JSP, or PHP technology.

16. The computer program product of claim 9, wherein:

the document list represents documents to be included in
the collection of documents, the documents identified by
a URL ora URI.

17. The computer program product of claim 9, wherein:

the instructions operable to cause data processing appara-
tus to receive the document list include instructions
operable to cause data processing apparatus to receive at
least a portion of the document list in response to a
request identifying a document template and a set of
parameters, the set of parameters used to identify docu-
ments to be included in the collection of documents.

18. A system comprising:

one or more computing devices configured to perform
operations including:
receiving at a server one or more document templates,

each template identifying a class of documents and

US 9,092,414 B2

11

including instructions executable by a web server to
generate a particular static document of the class;
receiving a document list including a plurality of entries,
each of the plurality of entries identifying a document
template where an entry identifying a particular docu-
ment template also specifies a particular document of
the class to be generated from the particular document
template;
generating a plurality of static documents according to
the document list, each static document correspond-
ing to an entry in the document list, each static docu-
ment generated from a corresponding document tem-
plate identified in the document list;
for a generated static document of the plurality of static
documents, identifying one or more links within the
generated static document, and for each link that
includes a reference to an entry in the document list,
modifying the link to refer to the corresponding gen-
erated static document; and
storing the plurality of static documents in a collection
of documents, the collection of documents having a
hierarchical structure.
19. The system of claim 18, further operable to perform
operations comprising:
receiving a user request for a document;
when the request corresponds to an entry in the document
list, serving the previously generated static document
from the collection of documents corresponding to the
entry; and
when the request does not correspond to an entry in the
document list, dynamically generating the requested
document.

20

12

20. The system of claim 18, wherein:

each entry in the document list represents a web document.

21. The system of claim 18, wherein:

the document list includes one or more entries representing
static web documents to be included in the collection of
documents.

22. The system of claim 18, wherein:

one or more of the entries in the plurality of entries speci-
fies one or more parameters for generating a correspond-
ing static document according to the document template
identified in the corresponding entry; and

generating a document corresponding to an entry identify-
ing a document template includes passing the one or
more parameters specified by the entry to a web server
for use in generating the corresponding document.

23. The system of claim 18, wherein:

one or more of the document templates includes instruc-
tions implemented in ASP, JSP, or PHP technology.

24. The system of claim 18, wherein:

the document list represents documents to be included in
the collection of documents, the documents identified by
a URL ora URI.

25. The system of claim 18, wherein:

receiving the document list includes receiving at least a
portion of the document list in response to a request
identifying a document template and a set of parameters,
the set of parameters used to identify documents to be
included in the collection of documents.

#* #* #* #* #*

